周宇堃,甄俊平,靳波,边文瑾,杨洁,樊知昌.基于T1WI及IDEAL-T2WI影像组学模型鉴别腮腺多形性腺瘤和腺淋巴瘤[J].中国医学影像技术,2020,36(5):
基于T1WI及IDEAL-T2WI影像组学模型鉴别腮腺多形性腺瘤和腺淋巴瘤
Identification of parotid gland pleomorphic adenoma from adenolymphoma based on T1WI and IDEAL-T2WI radiomics models
投稿时间:2019-09-17  修订日期:2020-05-18
DOI:
中文关键词:  腮腺  多形性腺瘤  腺淋巴瘤  影像组学  机器学习  磁共振成像
英文关键词:parotid gland  pleomorphic adenoma  adenolymphoma  radiomics  machine learning  magnetic resonance imaging
基金项目:
作者单位E-mail
周宇堃 山西医科大学 zykunlucky123@163.com 
甄俊平* 山西医科大学第二医院 harrygin@163.com 
靳波 山西医科大学  
边文瑾 山西医科大学  
杨洁 山西医科大学  
樊知昌 山西医科大学  
摘要点击次数: 2653
全文下载次数: 385
中文摘要:
      摘要:目的 探讨T1WI、IDEAL-T2WI的影像组学特征及机器学习模型在鉴别腮腺多形性腺瘤和腺淋巴瘤中的价值。方法 回顾性分析33例腮腺多形性腺瘤和25例腺淋巴瘤患者的影像及临床资料。运用放射组学云平台在轴位T1WI和IDEAL-T2WI图像上手动勾画病灶ROI以提取影像组学特征,运用方差阈值法、SelectKBest及Lasso算法筛选出最优特征。采用随机森林、逻辑回归算法建立机器学习模型,绘制ROC曲线,分析T1WI、IDEAL-T2WI、IDEAL-T2WI联合T1WI建立模型的诊断效能。结果 T1WI、IDEAL-T2WI、IDEAL-T2WI联合T1WI分别得到6、9、12个有效特征,基于IDEAL-T2WI联合T1WI建立随机森林模型的诊断效能最高,AUC为0.87,95%CI为0.59-1.00,准确率0.83。结论 基于T1WI、IDEAL-T2WI的影像组学特征及机器学习模型对腮腺多形性腺瘤和腺淋巴瘤的鉴别诊断具有价值。
英文摘要:
      Abstract: Objective To investigate the value of radiomics features and machine learning models based on T1WI and IDEAL-T2WI in differential diagnosis of parotid gland pleomorphic adenoma from adenolymphoma. Methods The clinical and imaging data of 58 patients with parotid tumors were retrospectively analyzed, including 33 with pleomorphic adenoma and 25 with adenolymphoma. Axial scanning images of T1WI, IDEAL-T2WI were manually segmented and radiomics features were extracted using the radcloud software. The effective radiomics features were selected by the variance threshold method, SelectKBest and Lasso algorithm. The machine learning models were established by using random forest and logistic regression algorithm, and the ROC curve was drawn to analyze the diagnostic performance. The ability of T1WI, IDEAL-T2WI and image combination in diagnosis of pleomorphic adenoma from adenolymphoma were analyzed. Results T1WI, IDEAL-T2WI and IDEAL-T2WI combined with T1WI obtained 6, 9 and 12 effective features. The random forest model based on IDEAL-T2WI combined with T1WI sequences had the highest diagnostic performance, with the AUC of 0.87, the 95%CI of 0.59-1.00, and the accuracy of 0.83. Conclusion The radiomics features and machine learning models based on T1WI and IDEAL-T2WI could provide important reference for differentiation between pleomorphic adenoma and adenolymphoma.
查看全文  查看/发表评论  下载PDF阅读器