于子洋,任克.CT纹理分析在肾脏嫌色细胞癌和嗜酸性细胞腺瘤中的鉴别诊断价值[J].中国医学影像技术,2020,36(5):
CT纹理分析在肾脏嫌色细胞癌和嗜酸性细胞腺瘤中的鉴别诊断价值
The value of CT texture analysis in the differential diagnosis of renal chromophobe cell carcinoma and renal oncocytoma
投稿时间:2019-08-05  修订日期:2020-05-18
DOI:
中文关键词:  嫌色细胞癌  嗜酸性细胞腺瘤  随机森林算法  纹理分析  
英文关键词:Chromophobe cell renal carcinoma  Renal oncocytoma  Random forest algorithm  Texture analysis  
基金项目:国家重点研发计划项目书
作者单位E-mail
于子洋 中国医科大学附属第一医院 15840098023@163.com 
任克* 中国医科大学附属第一医院 renke815@sina.com 
摘要点击次数: 1455
全文下载次数: 344
中文摘要:
      目的 探讨肾脏增强CT的纹理分析在鉴别肾脏嫌色细胞癌(Chromophobe cell renal carcinoma,CCRC)和嗜酸性细胞腺瘤(Renal oncocytoma,RO)中的价值。方法 回顾性分析64例CCRC和31例RO肾脏肿瘤病灶的CT图像,采用ITK-SNAP version 4.11.0软件进行感兴趣区勾画并使用A.K.Version V3.0.0.R软件提取纹理特征。通过随机森林算法选取纹理参数,采用Logistic回归评价所得参数在CCRC和RO中的鉴别效能。结果 使用Logistics回归对随机森林算法筛选得到的皮质期、实质期以及两期混合后权重值由高到低的前20个纹理参数进行评价,AUC值为分别为0.876、0.861和0.945。结论 基于CT图像的纹理分析研究对CCRC和RO的鉴别诊断具有临床价值。
英文摘要:
      Objective To investigate the value of radiomics combined with renal enhanced CT texture analysis and machine learning in the identification of chromophobe cell renal carcinoma (CCRC) and renal oncocytoma (RO). Methods CT images of 64 cases of CCRC and 31 cases of RO renal tumor lesions were retrospectively analyzed. Itk-snap version 4.11.0 software was used to delineate the region of interest and A.K.Version v3.0.0.r software was used to extract texture features. Random forest model is established by texture features included in random forest algorithm. Logistic regression was used to evaluate the discriminative efficacy of the established model in CCRC and RO. Results The first 20 texture parameters selected by the random forest algorithm from corticomedullary phase, nephrographic phase and combination of the two phases, with weight values from high to low, were evaluated by Logistics regression and the AUC values were 0.876, 0.861 and 0.945 respectively. Conclusion The study of texture analysis based on CT images has clinical value in the differential diagnosis of CCRC and RO.
查看全文  查看/发表评论  下载PDF阅读器