籍庆余,高扬,王志强,唐跃,贾六军,李彬,孙凯,吕滨.腺苷负荷动态CT心肌灌注定量评价冠状动脉微循环的实验研究[J].中国医学影像技术,2020,36(2):
腺苷负荷动态CT心肌灌注定量评价冠状动脉微循环的实验研究
Quantitative evaluation of coronary microcirculation by adenosine loading dynamic CT perfusion
投稿时间:2019-07-02  修订日期:2020-02-17
DOI:
中文关键词:  体层摄影术,X线计算机  腺苷  冠状动脉微循环  心肌灌注  
英文关键词:X-ray computed  Adenosine  Coronary microcirculation  Myocardial perfusion  Porcine
基金项目:国家“重大慢性非传染性疾病防控研究”重点专项(2016YFC1300400);国家自然科学基金面上项目(批准号:81271571)
作者单位E-mail
籍庆余 内蒙古科技大学包头医学院第二附属医院 jiqingyu123@163.com 
高扬 中国医学科学院阜外医院  
王志强 中国医学科学院阜外医院  
唐跃 中国医学科学院阜外医院  
贾六军 中国医学科学院阜外医院  
李彬 中国医学科学院阜外医院  
孙凯 中国医学科学院阜外医院深圳医院  
吕滨* 中国医学科学院阜外医院 blu@vip.sina.com 
摘要点击次数: 1718
全文下载次数: 422
中文摘要:
      目的:利用猪与人冠状动脉近似的特点,通过注射腺苷行CT动态心肌灌注扫描,观察腺苷对心肌灌注的影响、对比腺苷负荷前后心肌灌注变化并得出定量指标,供临床参考。方法:正常实验用中华小型猪10只,分别于静息态及负荷态行CT动态心肌灌注成像扫描,将扫描数据存至影像PACS系统通过图像后处理软件测得左室心肌17个节段、右冠状动脉(right coronary artery,RCA)-前降支(leftSanteriorSdescendingSbranch,LAD)-回旋支(left circumflexSartery,LCx)三支血管所支配心肌、基底部-中间部-心尖部(包括心尖)三个区域以及各心肌壁所属心肌节段的灌注量化指标,包括心肌血流量(myocardial blood flow,MBF)、心肌血容量(myocardial blood volume,MBV)、达峰时间(time to peak,TTP)及组织通过时间( tissue transit time,TTT)。将所有心肌节段分为静息灌注组和负荷灌注组,采用配对样本t检验比较两组间MBF、MBV、TTP及TTT的差异,通过腺苷负荷后测得心肌血流灌注量化指标,研究腺苷对冠脉微循环的负荷效能。结果:10只中华小型猪完成实验,静息灌注组MBF、MBV、TTP、TTT分别为(199.8±66.2)ml/100ml/min、(15.7±5.6)ml/100 ml、(6.4±2.0)s、(13.4±4.9)s,负荷灌注组MBF、MBV、TTP、TTT分别为(278.9±123.2)ml/100ml/min、(20.9±7.7)ml/100 ml、(5.8±1.7)s、(12.5±4.5)s,两组中MBF、MBV显著升高、TTP减少,差异具有统计学意义(t值分别为8.757、7.738、-3.367,P<0.05);两组中TTT数据间差异无统计学意义(t值为-1.743,P>0.05)。结论:腺苷可以增加心肌血流灌注、缩短灌注达峰时间,结合CT动态心肌灌注成像可以定量分析负荷前后心肌灌注的变化及程度,此外发现腺苷负荷前后心肌组织通过时间无显著差异,提示正常心肌组织灌注储备不受腺苷影响。
英文摘要:
      Objective: To take advantage of the similarity between pig and human coronary arteries, and perform a CT dynamic myocardial perfusion scan by injecting adenosine to observe the effect of adenosine on myocardial perfusion, compare changes in myocardial perfusion before and after adenosine load, and obtain quantitative indicators for Clinical reference.Methods: Normal pigs underwent CT dynamic myocardial perfusion imaging in resting and loaded states, and scanned data were stored in the image PACS system. The left ventricular myocardium was measured by image post-processing software for 17 segments, right coronary artery (RCA)- left anterior descending branch (LAD)- left circumflex artery (LCx) three vessels support the myocardial, basal-middle-apical (including apical) regions, and perfused quantitative indicators of myocardial wall segments, including myocardial blood flow (MBF), myocardial blood volume (MBV), time to peak, (TTP), and tissue transit time (TTT). All myocardial segments were divided into resting perfusion group and load perfusion group. The difference of MBF, MBV, TTP and TTT between the two groups was compared by paired sample t test. The quantitative index of myocardial perfusion was measured by adenosine load. The loading efficiency of adenosine on coronary microcirculation. Results: Ten Chinese miniature pigs completed the experiment. The MBF, MBV, TTP and TTT in the resting perfusion group were (199.8±66.2) ml/100ml/min, (15.7±5.6) ml/100 ml, (6.4±2.0) s. (13.4±4.9) s, MBF, MBV, TTP and TTT in the perfusion group were (278.9±123.2) ml/100ml/min, (20.9±7.7) ml/100 ml, (5.8±1.7) s, (12.5 ±4.5) s, MBF, MBV increased significantly, TTP decreased in the two groups, the difference was statistically significant (t values were 8.757, 7.738, -3.367, P <0.05); there was no statistical difference between the two groups in TTT data. Significance (t= -1.743, P>0.05). Conclusion: Adenosine can increase myocardial perfusion and shorten the time of perfusion peak. Combined with CT dynamic myocardial perfusion imaging, the changes of myocardial perfusion before and after loading can be quantitatively analyzed. In addition, there is no significant difference in myocardial tissue transit time before and after adenosine loading.
查看全文  查看/发表评论  下载PDF阅读器