马芳芳,贾晶,王志军,张莉萍,胡靖波,徐奋玲,田兆荣.能谱增强CT定量参数预测食管癌[STHX]p53基因突变[J].中国医学影像技术,2025,41(12):2001~2005
能谱增强CT定量参数预测食管癌[STHX]p53基因突变
Quantitative parameters of spectral enhanced CT for predicting p53 gene mutation of esophageal cancer
投稿时间:2025-03-04  修订日期:2025-12-07
DOI:10.13929/j.issn.1003-3289.2025.12.014
中文关键词:  食管肿瘤  体层摄影术,X线计算机  基因  突变
英文关键词:esophageal neoplasms  tomography, X-ray computed  genes  mutation
基金项目:宁夏自然科学基金(2023AAC03548、2023AAC03684)。
作者单位E-mail
马芳芳 宁夏医科大学总医院放射科, 宁夏 银川 750001
宁夏回族自治区体育科学技术中心运动康复诊疗中心门诊部, 宁夏 银川 750021
宁夏医科大学第一临床医学院, 宁夏 银川 750001 
 
贾晶 宁夏医科大学总医院放射科, 宁夏 银川 750001  
王志军 宁夏医科大学总医院放射科, 宁夏 银川 750001  
张莉萍 宁夏医科大学总医院放射科, 宁夏 银川 750001  
胡靖波 宁夏医科大学第一临床医学院, 宁夏 银川 750001  
徐奋玲 宁夏医科大学第一临床医学院, 宁夏 银川 750001  
田兆荣 宁夏医科大学总医院放射科, 宁夏 银川 750001 yyhuihui521@163.com 
摘要点击次数: 86
全文下载次数: 30
中文摘要:
      目的 探讨能谱增强CT定量参数预测食管癌 p53 基因突变的价值。方法 回顾性收集77例经病理证实的单发食管癌,包括47例 p53 基因突变型(突变型组)、30例 p53 基因野生型(野生型组);比较组间术前能谱增强CT定量参数,包括动、静脉期病灶碘浓度(IC)、有效原子序数(Eff-Z)、标准化IC(NIC)及能谱曲线斜率(λ)。基于组间差异有统计学意义的能谱增强CT定量参数预测食管癌 p53 基因突变;绘制受试者工作特征曲线,计算曲线下面积(AUC),评估其预测效能。结果 突变型组IC、Eff-Z、λ,以及IC、Eff-Z、NIC及λ均大于野生型组(P均<0.05),组间NIC差异无统计学意义(P=0.794)。以IC、Eff-Z、λ,以及IC、Eff-Z、NIC及λ预测食管癌 p53 基因突变的AUC分别为0.644、0.637、0.706、0.816、0.842、0.694及0.764。结论 能谱增强CT定量参数能有效预测食管癌 p53 基因突变。
英文摘要:
      Objective To explore the value of quantitative parameters of spectral enhanced CT for predicting p53 gene mutation in esophageal cancer. Methods A total of 77 patients with solitary esophageal cancer confirmed by pathology were retrospectively enrolled, including 47 cases of p53 gene mutation type (mutation type group) and 30 cases of p53 gene wild type (wild type group).Quantitative parameters of spectral enhanced CT before surgery, including iodine concentration (IC), effective atomic number (Eff-Z), normalized IC (NIC) and spectral curve slope (λ) of lesions in arterial and venous phases were compared between groups. Spectrally enhanced CT quantitative parameters being statistically different between groups were used to predict p53 gene mutations in esophageal cancer, the receiver operating characteristic (ROC) curve was drawn, and the area under the curve (AUC) was calculated to evaluate the predictive performance of each parameter. Results ICa, Eff-Za, λa, as well as ICv, Eff-Zv, NICv and λv in mutant type group were all higher than those in wild type group (all P<0.05), while NICa was not different between groups (P=0.794). AUC for predicting p53 gene mutations in esophageal cancer of ICa, Eff-Za, λa, ICv, Eff-Zv, NICv and λv was 0.644, 0.637, 0.706, 0.816, 0.842, 0.694 and 0.764, respectively. Conclusion Quantitative parameters of spectral enhanced CT could effectively predict p53 gene mutation in esophageal cancer.
查看全文  查看/发表评论  下载PDF阅读器