姜波,刘崇,鲁一桐,李冬雪,杜顺达,冯逢,王沄.钆塞酸二钠增强MRI联合T1 mapping预测肝细胞癌致肿瘤包绕血管[J].中国医学影像技术,2025,41(10):1741~1745
钆塞酸二钠增强MRI联合T1 mapping预测肝细胞癌致肿瘤包绕血管
Gd-EOB-DTPA enhanced MRI and T1 mapping for evaluating vessels encapsulating tumor clusters caused by hepatocellular carcinoma
投稿时间:2025-07-02  修订日期:2025-09-25
DOI:10.13929/j.issn.1003-3289.2025.10.029
中文关键词:  肝肿瘤  磁共振成像  肿瘤包绕血管
英文关键词:liver neoplasms  magnetic resonance imaging  vessels encapsulating tumor clusters
基金项目:
作者单位E-mail
姜波 中国医学科学院 北京协和医学院 北京协和医院放射科, 北京 100730  
刘崇 中国医学科学院 北京协和医学院 北京协和医院放射科, 北京 100730  
鲁一桐 中国医学科学院 北京协和医学院 北京协和医院放射科, 北京 100730  
李冬雪 中国医学科学院 北京协和医学院 北京协和医院放射科, 北京 100730  
杜顺达 中国医学科学院 北京协和医学院 北京协和医院放射科, 北京 100730  
冯逢 中国医学科学院 北京协和医学院 北京协和医院放射科, 北京 100730  
王沄 中国医学科学院 北京协和医学院 北京协和医院放射科, 北京 100730 wangyun8637@163.com 
摘要点击次数: 120
全文下载次数: 43
中文摘要:
      目的 观察钆塞酸二钠(Gd-EOB-DTPA)增强MRI联合T1 mapping预测肝细胞癌(HCC)致肿瘤包绕血管(VETC)的价值。方法 回顾性纳入112例经术后病理证实的HCC,根据有无VETC将其分为阳性组(n=46)与阴性组(n=66);比较组间HCC Gd-EOB-DTPA增强MRI表现及T1 mapping参数,采用多因素logistic回归分析筛选HCC致VETC的独立危险因素并构建列线图模型;绘制受试者工作特征曲线,计算曲线下面积(AUC),分析上述各独立危险因素及列线图模型预测HCC致VETC的效能。结果 阳性组HCC最大径、边缘不光整占比、肝胆期(HBP)瘤周低信号发生率及HBP T1值(T1post)均高于阴性组,而T1值变化率(ΔT1%)低于阴性组(P均<0.05)。HCC最大径增大、边缘不光整、HBP瘤周低信号及低ΔT1%均为HCC致 VETC阳性的独立危险因素(P均<0.05),以之预测HCC致VETC的AUC分别为0.680、0.675、0.686及0.752;而联合上述指标构建的列线图模型预测HCC VETC的敏感度、特异度及AUC分别为78.79%、71.74%及0.839。结论 Gd-EOB-DTPA增强MRI联合T1 mapping可有效预测HCC致VETC。
英文摘要:
      Objective To investigate the value of gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) enhanced MRI and T1 mapping for evaluating vessels encapsulating tumor clusters (VETC) caused by hepatocellular carcinoma (HCC). Methods Totally 112 cases of HCC confirmed by surgical pathology were retrospectively enrolled and categorized into positive group (n=46) and negative group (n=66) based on the presence or absence of VETC. Gd-EOB-DTPA enhanced MRI features and T1 mapping parameters were compared between groups. Multivariate logistic regression analysis was used to identify independent risk factors for HCC VETC, and a combined nomogram model was developed. Receiver operating characteristic (ROC) curve was plotted, and the area under the curve (AUC) was calculated to evaluate the efficacy of the identified independent risk factors and nomogram model for predicting HCC VETC. Results The maximum diameter of HCC, incidence of non-smooth tumor margin, prevalence of peritumoral hypo-intensity on hepatobiliary phase (HBP), as well as T1 value of HBP (T1post) in positive group were all higher, while the change rate of T1 value (ΔT1%) in positive group was lower than those in negative group (all P<0.05). The increased maximum diameter, non-smooth margin, peritumoral hypo-intensity on HBP and low ΔT1% were all independent risk factors for HCC VETC (all P<0.05), with AUC for predicting HCC VETC of 0.680, 0.675, 0.686 and 0.752, respectively. The nomogram model developed based on the combination of the above factors showed sensitivity of 78.79%, specificity of 71.74% and AUC of 0.839 for predicting HCC VETC. Conclusion Gd-EOB-DTPA enhanced MRI combined with T1 mapping could be used to effectively predict HCC VETC.
查看全文  查看/发表评论  下载PDF阅读器