章双林,陈昉铭,高茜.双参数MRI逐步判别模型用于检出临床有意义前列腺移行带癌[J].中国医学影像技术,2024,40(12):1889~1893
双参数MRI逐步判别模型用于检出临床有意义前列腺移行带癌
Biparameter MRI stepwise discriminant model for detecting clinically significant prostate cancer in transitional zone
投稿时间:2024-06-08  修订日期:2024-08-31
DOI:10.13929/j.issn.1003-3289.2024.12.018
中文关键词:  前列腺肿瘤  磁共振成像  诊断,鉴别
英文关键词:prostatic neoplasms  magnetic resonance imaging  diagnosis, differential
基金项目:
作者单位E-mail
章双林 江南大学附属中心医院影像科, 江苏 无锡 214002  
陈昉铭 江南大学附属中心医院影像科, 江苏 无锡 214002 fmchencoil@126.com 
高茜 江南大学附属中心医院影像科, 江苏 无锡 214002  
摘要点击次数: 316
全文下载次数: 95
中文摘要:
      目的 基于T2WI及弥散加权成像(DWI)建立双参数MRI逐步判别模型,观察其检出移行带临床有意义前列腺癌(CSPCa)的价值。方法 回顾性收集经病理证实的224例前列腺移行带病变患者,根据病理结果及Gleason评分分为CSPCa组(n=81)及非CSPCa组(n=143)。采用单因素及逐步判别分析方法分析2组病变T2WI及DWI表现,筛选CSPCa与非CSPCa的独立影响因素,并分别建立CSPCa及非CSPCa的判别函数模型;采用交互验证法验证判别函数模型诊断效能,以正确判别率≥80%为具有鉴别诊断价值。结果 病灶最大径、边界、DWI信号、前列腺包膜完整与否及表观弥散系数最小值均为CSPCa与非CSPCa的独立影响因素,以之分别建立的CSPCa及非CSPCa判别函数模型对CSPCa与非CSPCa的正确判别率分别为90.11%及88.81%,整体正确判别率为89.31%。结论 双参数MRI逐步判别模型可用于检出前列腺移行带癌。
英文摘要:
      Objective To establish biparameter MRI stepwiese discriminant models based on T2WI and diffusion-weighted imaging (DWI), and to observe their value for detecting clinically significant prostate cancer (CSPCa) in transitional zone. Methods Totally 224 patients with pathologically confirmed prostatic transitional zone lesions were retrospectively collected and divided into CSPCa group (n=81) and non-CSPCa group (n=143) according to pathological results and Gleason scores. Single factor and stepwise discriminant analysis were used to analyze T2WI and DWI manifestations of lesions in both groups, so as to screen the independent impact factors for distinguishing CSPCa from non-CSPCa. Discriminant functions models for CSPCa and non-CSPCa were established, respectively, and the diagnostic efficiency of models were verified using cross-verification method, while correct discriminant rate≥80% was considered as having differential diagnostic value. Results The maximum diameter, boundary, DWI signal of lesions, prostate capsule being complete or not, as well as the minimum apparent diffusion coefficient were all independent impact factors for distinguishing CSPCa from non-CSPCa, and the discriminant function models for CSPCa and non-CSPCa were established based on the above factors, respectively,with correct discrimination rates of discriminant function model for CSPCa and non-CSPCa of 90.11% and 88.81%, respectively, and the overall correct discrimination rate of 89.31%. Conclusion Biparameter MRI stepwise discriminant models could be used to detect CSPCa in transitional zone.
查看全文  查看/发表评论  下载PDF阅读器