张洪博,赵蕾,马晓海.深度学习及影像组学在肥厚型心肌病中的应用进展[J].中国医学影像技术,2023,39(6):920~923
深度学习及影像组学在肥厚型心肌病中的应用进展
Application progresses of deep learning and radiomic in hypertrophic cardiomyopathy
投稿时间:2023-01-12  修订日期:2023-03-17
DOI:10.13929/j.issn.1003-3289.2023.06.027
中文关键词:  心肌病,肥厚型  诊断显像  影像组学  深度学习
英文关键词:cardiomyopathy, hypertrophic  diagnostic imaging  radiomics  deep learning
基金项目:国家自然科学基金(82071875)、北京市自然科学基金(7212025)。
作者单位E-mail
张洪博 首都医科大学附属北京安贞医院介入诊疗科, 北京 100020
首都医科大学附属北京安贞医院医学影像科, 北京 100020 
 
赵蕾 首都医科大学附属北京安贞医院医学影像科, 北京 100020  
马晓海 首都医科大学附属北京安贞医院介入诊疗科, 北京 100020 maxi8238@yahoo.com 
摘要点击次数: 1276
全文下载次数: 747
中文摘要:
      肥厚型心肌病(HCM)是最常见的非缺血性心肌病之一。超声心动图(UCG)和心脏MR (CMR)等是诊断HCM的主要影像学方法,但分析HCM图像较为繁琐,且需要进行鉴别诊断,导致诊断难度增加。近年来,深度学习和影像组学在智能化诊断HCM、自动化处理图像、预测基因型及心肌纤维化等方面发挥重要作用。本文对深度学习和影像组学技术在HCM中的应用进展进行综述。
英文摘要:
      Hypertrophic cardiomyopathy (HCM) is one of the most prevalent non-ischemic cardiomyopathy. Ultrasonic cardiography (UCG) and cardiac MR (CMR) were the primary imaging diagnostic methods for HCM, but the difficulty was increased since troublesome image analysis and differentiation. In recent years, deep learning and radiomics were applied to HCM, having significant value for intelligent diagnosis of HCM, automated processing of images and predicting genotype and myocardial fibrosis. The application progresses of deep learning and radiomic in HCM were reviewed in this article.
查看全文  查看/发表评论  下载PDF阅读器