李蕊,崔磊.深度学习CT图像迭代重建及其用于儿童CT进展[J].中国医学影像技术,2023,39(2):303~306
深度学习CT图像迭代重建及其用于儿童CT进展
Progresses of CT image iterative reconstruction technique based on deep learning and applications in pediatric CT
投稿时间:2022-06-25  修订日期:2022-09-03
DOI:10.13929/j.issn.1003-3289.2023.02.036
中文关键词:  体层摄影术,X线计算机  深度学习  儿童  图像质量
英文关键词:tomography, X-ray computed  deep learning  child  image quality
基金项目:
作者单位E-mail
李蕊 南通大学医学院, 江苏 南通 226001
南通大学第二附属医院影像科, 江苏 南通 226001 
 
崔磊 南通大学第二附属医院影像科, 江苏 南通 226001 cuigeleili@126.com 
摘要点击次数: 1859
全文下载次数: 606
中文摘要:
      人工智能在分割、重建医学及图像处理等方面均发挥重要作用。儿童CT检查应遵循尽可能低辐射剂量原则,即在低辐射剂量下最大限度保持或获得更高图像质量。本文对基于人工智能的深度学习CT图像迭代重建技术及其用于儿童CT进展进行综述。
英文摘要:
      Artificial intelligence plays an important role in segmentation, reconstruction and processing of medical imaging. Children's CT examination should follow the principle of low radiation dose as far as possible, that is to maintain or obtain higher image quality at low radiation dose. The progresses of CT image iterative reconstruction technique based on deep learning and applications in pediatric CT were reviewed in this article.
查看全文  查看/发表评论  下载PDF阅读器