吕培杰,刘娜娜,王落桐,Francesca Rigiroli,Daniele Marin,高剑波.深度学习重建算法优化能谱CT低单能量图像质量及检测肝脏低对比度小病灶能力[J].中国医学影像技术,2023,39(1):104~108
深度学习重建算法优化能谱CT低单能量图像质量及检测肝脏低对比度小病灶能力
Deep learning image reconstruction for optimizing image quality of low-energy spectral monochromatic CT and detecting liver small low-contrast lesions
投稿时间:2022-07-04  修订日期:2022-10-20
DOI:10.13929/j.issn.1003-3289.2023.01.024
中文关键词:  肝肿瘤|深度学习|体层摄影术,X线计算机|图像质量
英文关键词:liver neoplasms|deep learning|tomography, X-ray computed|image quality
基金项目:河南省高等学校重点科研项目(22A320057)。
作者单位E-mail
吕培杰 郑州大学第一附属医院放射科, 河南 郑州 450052  
刘娜娜 郑州大学第一附属医院放射科, 河南 郑州 450052  
王落桐 通用电气医疗集团CT影像研究中心, 北京 100176  
Francesca Rigiroli 哈佛大学医学院贝斯以色列女执事医疗中心放射科, 美国 马萨诸塞 22015  
Daniele Marin 杜克大学医学中心放射科, 美国 北卡罗来纳 27708  
高剑波 郑州大学第一附属医院放射科, 河南 郑州 450052 cjr.gaojianbo@vip.163.com 
摘要点击次数: 3326
全文下载次数: 910
中文摘要:
      目的 观察深度学习重建(DLIR)算法用于优化能谱CT低单能量图像质量及提高检测肝脏低对比度小病灶能力的可行性。方法 纳入30例接受上腹部门脉期增强扫描的肝脏疾病患者,包括58个肝脏病灶,分别采用DLIR及基于混合模型的自适应统计迭代重建(ASIR-V)算法重建40~70 keV (间隔10 keV)单能量图像;根据肝脏、门静脉及肝脏病灶对比噪声比(CNR)和噪声进行主观评价,针对图像总体质量、病灶显著性和诊断信心评分进行主观评价,比较不同图像之间评价结果的差异。结果 相比ASIR-V图像,40~70 keV能级下,DLIR图像的CNR肝脏、CNR门静脉及CNR肝脏病灶均显著增加而噪声均显著减少(P均<0.05);40~60 keV能级下,DLIR图像总体质量、病灶显著性及诊断信心评分均高于ASIR-V图像(P均<0.05)。结论 DLIR技术可显著减少低单能量成像噪声、改善图像质量并提高检测肝脏低对比度小病灶的能力。
英文摘要:
      Objective To investigate the feasibility of deep learning image reconstruction (DLIR) for optimizing image quality of low-energy spectral monochromatic CT and improving detection of liver small low-contrast lesions. Methods Thirty patients with 58 hepatic lesions who underwent upper abdominal portal-venous-phase enhanced CT were enrolled. Monochromatic images with energy levels ranging from 40 to 70 keV (10 keV increment) were reconstructed using DLIR and hybrid model-based adaptive statistical iterative reconstruction V (ASIR-V), respectively. The contrast-to-noise ratio (CNR) of liver, portal vein and hepatic lesions, also image noise were evaluated, the overall image quality, lesion conspicuity and diagnostic confidence were subjectively scored, and the outcomes were compared among different images. Results At the energy levels of 40—70 keV, compared with ASIR-V images, CNRliver, CNRportal vein and CNRhepatic lesion of DLIR images significantly increased (all P<0.05), while the image noise significantly reduced (all P<0.05). At the energy levels of 40—60 keV, the overall image quality, lesion conspicuity and diagnostic confidence of DLIR images were higher than those of ASIR-V images (all P<0.05). Conclusion DLIR technique could reduce noise of low-energy monochromatic images, improve image quality and detectability of liver small low-contrast lesions.
查看全文  查看/发表评论  下载PDF阅读器