陈飞,胡静,龚筱钦,张开军,华晔,戴春华,游涛.残差U-net与先验知识协同模型自动勾画宫颈癌术后临床靶区和危及器官[J].中国医学影像技术,2022,38(9):1380~1384
残差U-net与先验知识协同模型自动勾画宫颈癌术后临床靶区和危及器官
Residual U-net and prior knowledge collaboration model for automatic segmentation of clinical target volume and organ at risk after resection of cervical cancer
投稿时间:2022-04-26  修订日期:2022-06-20
DOI:10.13929/j.issn.1003-3289.2022.09.022
中文关键词:  子宫颈肿瘤  体层摄影术,X线计算机  临床靶区  危及器官  残差
英文关键词:uterine cervical neoplasms  tomography, X-ray computed  clinical target volume  organ at risk  residual
基金项目:江苏省卫生建委医学科研重点项目(ZDB2020022)、镇江市重点研发计划(社会发展)项目(SH2021040)。
作者单位E-mail
陈飞 江苏大学附属医院放疗科, 江苏 镇江 212000  
胡静 江苏大学附属医院放疗科, 江苏 镇江 212000  
龚筱钦 江苏大学附属医院放疗科, 江苏 镇江 212000  
张开军 江苏大学附属医院放疗科, 江苏 镇江 212000  
华晔 江苏大学附属医院放疗科, 江苏 镇江 212000  
戴春华 江苏大学附属医院放疗科, 江苏 镇江 212000  
游涛 江苏大学附属医院放疗科, 江苏 镇江 212000 youtao_zj@163.com 
摘要点击次数: 1017
全文下载次数: 455
中文摘要:
      目的 搭建残差U-net(RU)网络与先验知识协同(RPKC)自动勾画模型,评估其自动勾画宫颈癌术后患者临床靶区(CTV)和危及器官(OAR)的准确性。方法 基于48例(训练集)宫颈癌术后定位CT训练RPKC模型。以临床医师勾画的CTV及OAR为标准,采用戴斯相似系数(DSC)和第95百分位豪斯多夫距离(HD95)评估RPKC模型与RU模型勾画另20例宫颈癌术后患者(测试集)CTV及OAR(包括肠袋、直肠、膀胱、骨盆及双侧股骨头)的准确性。结果 RPKC模型自动勾画上述结构的DSC均高于RU模型,其中CTV及肠袋勾画效果差异有统计学意义(P均<0.05);除直肠外,RPKC模型自动勾画的HD95均低于RU模型,二者勾画CTV效果差异差异有统计学意义(P<0.05)。结论 RPKC模型能更准确地勾画宫颈癌术后CTV和OAR,有助于提高深度学习自动勾画的临床实用性。
英文摘要:
      Objective To build a residual U-net (RU) and prior knowledge collaboration (RPKC) automatic segmentation model, and to evaluate its accuracy of automatic segmentation of clinical target volume (CTV) and organ at risk (OAR) for patients with postoperative uterine cervical neoplasms. Methods Localization CT images of 48 cases with postoperative uterine cervical neoplasms (training set) were trained to build RPKC model. Based on CTV and OAR delineated by a physician, the accuracy of CTV and OAR (including bowel bag, rectum, bladder, pelvis and bilateral femoral head) delineated with RPKC and RU of another 20 cases with postoperative uterine cervical neoplasms (test set) were evaluated according to Dice similarity coefficient (DSC) and 95th percentile Hausdorff distance (HD95). Results For the above structures, the DSC of RPKC was higher than that of RU, especially DSC of RPKC for CTV and bowel bag were significantly improved (both P<0.05). Except for the rectum, the HD95 of RPKC of the above structures were all lower than that of RU, and the difference of CTV was significant (P<0.05). Conclusion RPKC could automatically delineate CTV and OAR accurately for patients with postoperative uterine cervical neoplasms, hence improving the clinical practicality of automatic segmentation based on deep learning.
查看全文  查看/发表评论  下载PDF阅读器