张康微,魏来,孟瑾茜,王培军.基于CT影像组学和机器学习脑出血研究进展[J].中国医学影像技术,2022,38(4):604~606
基于CT影像组学和机器学习脑出血研究进展
Research progresses of radiomics and machine learning based on CT for cerebral hemorrhage
投稿时间:2021-04-02  修订日期:2021-09-18
DOI:10.13929/j.issn.1003-3289.2022.04.031
中文关键词:  脑出血  体层摄影术,X线计算机  影像组学  机器学习
英文关键词:cerebral hemorrhage  tomography, X-ray computed  radiomics  machine learning
基金项目:上海市科学技术委员会科研计划(19411951400)。
作者单位E-mail
张康微 同济大学附属同济医院放射科, 上海 200065 65588068@163.com 
魏来 同济大学附属同济医院放射科, 上海 200065  
孟瑾茜 同济大学附属同济医院放射科, 上海 200065 zhangbodongfang@qq.com 
王培军 同济大学附属同济医院放射科, 上海 200065  
摘要点击次数: 2848
全文下载次数: 621
中文摘要:
      脑出血指非外伤性脑实质内出血,发病急,进展迅速,致死率和致残率高。对于疑诊急性脑出血患者,CT为首选影像学检查手段。影像组学高通量从CT图像中提取特征信息,结合机器学习算法,能快速、准确地诊断疾病、评估病情和预测预后。本文就基于CT影像组学和机器学习脑出血研究进展进行综述。
英文摘要:
      Intracerebral hemorrhage refers to non-traumatic cerebral hemorrhage with acute onset, rapid progression, high fatality rate and disability rate. CT has become the first choice for emergency patients with suspected acute cerebral hemorrhage. Radiomics can extract feature information from CT images with high throughput, hence quickly and accurately diagnosing diseases, evaluating severity and predicting prognosis combined with machine learning algorithm. The research progresses of radiomics and machine learning base on CT for cerebral hemorrhage were reviewed in this article.
查看全文  查看/发表评论  下载PDF阅读器