王彤,何萍,苏畅,崔立刚,林伟军,王心怡.计算机辅助多模态融合超声诊断乳腺良恶性肿瘤[J].中国医学影像技术,2021,37(8):1210~1213
计算机辅助多模态融合超声诊断乳腺良恶性肿瘤
Computer-aided multimodal fusion ultrasonic diagnosis of benign and malignant breast tumors
投稿时间:2020-07-31  修订日期:2021-04-21
DOI:10.13929/j.issn.1003-3289.2021.08.023
中文关键词:  乳腺肿瘤  超声检查  弹性成像技术  深度学习  多模态
英文关键词:breast neoplasms  ultrasonography  elasticity imaging techniques  deep learning  multimodality
基金项目:国家重点研发计划(2018YFC0114900)、中国科学院青年创新促进会项目(2019024)。
作者单位E-mail
王彤 中国科学院声学研究所超声技术中心, 北京 100190
中国科学院大学, 北京 100049 
 
何萍 北京大学第三医院超声诊断科, 北京 100191  
苏畅 中国科学院声学研究所超声技术中心, 北京 100190
中国科学院大学, 北京 100049 
 
崔立刚 北京大学第三医院超声诊断科, 北京 100191  
林伟军 中国科学院声学研究所超声技术中心, 北京 100190
中国科学院大学, 北京 100049 
linwj@mail.ioa.ac.cn 
王心怡 北京大学肿瘤医院暨北京市肿瘤防治研究所乳腺中心恶性肿瘤发病机制及转化研究教育部重点实验室, 北京 100142  
摘要点击次数: 3107
全文下载次数: 2002
中文摘要:
      目的 观察利用深度学习(DL)融合常规超声和超声弹性成像诊断乳腺良、恶性肿瘤的效能。方法 利用DL卷积神经网络(CNN)提取乳腺肿瘤超声灰阶与超声弹性特征,并进行多模态融合,评价融合弹性图像或弹性比值等不同信息方式对乳腺良、恶性肿瘤的诊断效能;绘制受试者工作特征(ROC)曲线,计算曲线下面积(AUC),评估多模态融合模型的诊断效能。结果 多模态融合模型鉴别乳腺良、恶性肿物的效能优于单模态常规超声或弹性模型,其中融合灰阶与弹性图像模型鉴别诊断效能优于融合灰阶与弹性比值模型,分类准确率达93.51%,敏感度为94.88%,特异度为92.25%,AUC达0.975。结论 计算机辅助多模态融合有助于提高超声对乳腺良、恶性肿瘤的诊断效能。
英文摘要:
      Objective To observe the efficacy of fusion of conventional ultrasound and ultrasonic elastography using deep learning (DL) for diagnosis of benign and malignant breast tumors. Methods Convolutional neural network (CNN) was used to extract the features of ultrasonic grayscale images and ultrasonic elastic images, and multimodal fusion was performed. The performances of fusion of elastic images or elastic ratio data and other different information methods in diagnosis of benign and malignant breast tumors were evaluated, respectively. Receiver operating characteristic (ROC) curves were drawn, and the areas under the curves (AUC) were calculated to further assess the efficacy of the models.Results The multimodal fusion models were superior to single modal of conventional ultrasound or elastic model for differentiating benign and malignant breast tumors. The fusion model of gray-scale image and elastic image was superior to that of gray-scale image and elastic ratio, with classification accuracy of 93.51%, sensitivity of 94.88% and specificity of 92.25%, and the AUC was 0.975. Conclusion Computer-aided multimodal fusion could help to increase the efficacy of ultrasonic diagnosis of benign and malignant breast tumors.
查看全文  查看/发表评论  下载PDF阅读器