孙鑫,周平,赵永峰,章燕,梁永平,石一帆.AmCAD-UT Detection在甲状腺结节超声诊断中的应用[J].中国医学影像技术,2020,36(5):749~753
AmCAD-UT Detection在甲状腺结节超声诊断中的应用
Application of AmCAD-UT Detection in ultrasonic diagnosis of thyroid nodules
投稿时间:2019-05-28  修订日期:2020-02-19
DOI:10.13929/j.issn.1003-3289.2020.05.026
中文关键词:  甲状腺结节  超声检查  计算机辅助诊断
英文关键词:thyroid nodule  ultrasonography  computer-aided diagnosis
基金项目:国家自然科学基金项目(81871367)、湖南省科技厅科技计划资助项目(2018SK21217)。
作者单位E-mail
孙鑫 中南大学湘雅三医院超声科, 湖南 长沙 410006  
周平 中南大学湘雅三医院超声科, 湖南 长沙 410006 zhouping1000@hotmail.com 
赵永峰 中南大学湘雅三医院超声科, 湖南 长沙 410006  
章燕 中南大学湘雅三医院超声科, 湖南 长沙 410006  
梁永平 中南大学湘雅三医院超声科, 湖南 长沙 410006  
石一帆 中南大学湘雅三医院超声科, 湖南 长沙 410006  
摘要点击次数: 2846
全文下载次数: 443
中文摘要:
      目的 评估计算机辅助诊断(CAD)系统AmCAD-UT Detection(安克侦)用于甲状腺超声的诊断效能及临床价值。方法 采集171例甲状腺结节患者的甲状腺超声图像,分别由安克侦及4名超声科医师(A、B、C、D,分别具有10年、5年、1年及1个月以上甲状腺超声诊断经验)单独及以安克侦辅助医师分析图像,并根据美国放射学会甲状腺影像报告和数据系统(ACR-TIRADS)指南进行分类;以病理结果为金标准,绘制安克侦及4名医师辅以安克侦前后根据ACR-TIRADS指南对结节进行分类的ROC曲线,计算ACR-TIRADS指南诊断良恶性结节的最佳截断值及AUC,评价其诊断效能。结果 共纳入205个甲状腺结节,89个良性、116个恶性病变。ACR-TIRADS指南诊断良恶性结节的最佳截断值为TR5级。安克侦诊断甲状腺恶性结节的敏感度与医师B差异无统计学意义(P=1.00),特异度则低于医师A及B(P均<0.05),其AUC与医师A、B、D差异均有统计学意义(Z=4.34、3.71、2.76,P均<0.05)。辅以安克侦后,4名医师诊断甲状腺结节的敏感度(93.10%、90.52%、85.34%、75.00%)及AUC值(0.95、0.93、0.86、0.86)均较前提高(P均<0.05),特异度则仅医师C、D较前改善(P均<0.05)。结论 安克侦对诊断甲状腺结节具有一定价值,敏感度与具有5年诊断经验的超声科医师相似,用以辅助可提高超声科医师、尤其是低年资医师对于甲状腺结节的诊断效能。
英文摘要:
      Objective To evaluate the diagnostic efficiency and clinical application value of computer-aided diagnosis (CAD) system AmCAD-UT Detection in thyroid ultrasound examination. Methods Totally 171 patients with thyroid nodules requiring ultrasonic examination were collected. Ultrasonic thyroid images of all patients were obtained, then were analyzed with AmCAD-UT Detection only, 4 ultrasound physicians (A, B, C, D, having more than 10 years, 5 years, 1 year and 1 month experience, respectively) with or without AmCAD-UT Detection, respectively, and the nodules were classified according to the American College of Radiology Thyroid Imaging Reporting and Data System guidelines (ACR-TIRADS).Taken pathologic results as the gold standards, ROC curves of the classification of nodules of mCAD-UT Detection and 4 radiologists using the former or not were drawn according to ACR-TIRADS, and the optimal cut-off value for diagnosis of nodule malignancy with ACR-TIRADS guidelines and AUC were calculated, and their diagnostic efficacy were then analyzed. Results A total of 205 thyroid nodules were involved, with 89 benign and 116 malignant lesions. TR5 was the optimal cut-off value for diagnosis of benign or malignant nodule with ACR-TIRADS. The diagnostic sensitivity of AmCAD-UT Detection to diagnose thyroid malignant nodule was similar to that of physician B (P=1.00), and the specificity was lower than that of physician A and B (both P<0.05), while its AUC was statistically different with physician A, B and D (Z=4.34, 3.71, 2.76, all P<0.05). With AmCAD-UT Detection, the sensitivity (93.10%, 90.52%, 85.34%, 75.00%) and AUC values (0.95, 0.93, 0.86, 0.86) of diagnosis of thyroid nodules of all physicians were improved (all P<0.05), while for the specificity, only physician C and D had better results (both P<0.05). Conclusion Thyroid CAD system AmCAD-UT Detection has certain value for diagnosing thyroid nodules, with sensitivity similar to physician with 5 years ultrasound diagnostic experience, therefore can be used to improve diagnosis efficiency of thyroid nodule of physicians, especially for those with less experiences.
查看全文  查看/发表评论  下载PDF阅读器