于子洋,由贺,庞惠泽,黄文镜,任克.CT纹理分析鉴别诊断肾脏嫌色细胞癌与嗜酸性细胞腺瘤[J].中国医学影像技术,2020,36(5):743~748 |
CT纹理分析鉴别诊断肾脏嫌色细胞癌与嗜酸性细胞腺瘤 |
CT texture analysis for differential diagnosis of renal chromophobe cell carcinoma and renal oncocytoma |
投稿时间:2019-08-05 修订日期:2019-09-16 |
DOI:10.13929/j.issn.1003-3289.2020.05.025 |
中文关键词: 癌,肾细胞 肾嗜酸细胞腺瘤 体层摄影术,X线计算机 随机森林算法 纹理分析 |
英文关键词:carcinoma,renal cell renal oncocytoma tomography,X-ray computed random forest algorithm texture analysis |
基金项目:国家自然科学基金面上项目(81571635)、科技部2017国家重点研发计划课题(2017YFC0113403)。 |
|
摘要点击次数: 3045 |
全文下载次数: 663 |
中文摘要: |
目的 探讨肾脏增强CT的纹理分析在鉴别肾脏嫌色细胞癌(CCRC)与嗜酸性细胞腺瘤(RO)中的价值。方法 回顾性分析64例CCRC和31例RO病灶的CT图像,采用ITK-SNAP version 4.11.0软件进行ROI勾画并使用A.K.Version V3.0.0.R软件提取纹理特征。通过随机森林算法选取纹理参数,采用Logistic回归评价所得参数鉴别CCRC与RO的效能。结果 使用Logistic回归对随机森林算法筛选得到的皮质期、实质期及两期混合后权重值由高到低的前20个纹理参数进行评价,AUC值分别为0.876、0.861和0.945。结论 基于肾脏增强CT图像纹理分析对鉴别诊断CCRC与RO具有临床价值。 |
英文摘要: |
Objective To investigate the value of texture analysis based on enhanced renal CT for identification of chromophobe cell renal carcinoma (CCRC) and renal oncocytoma (RO). Methods CT images of 64 patients with CCRC and 31 with RO were retrospectively analyzed. ITK-SNAP version 4.11.0 software was used to delineate the region of interest, and A.K.Version v3.0.0.R software was used to extract texture features. Random forest model was established using texture features included in random forest algorithm. Logistic regression was used to evaluate the discriminative the efficacy of the established models for differential diagnosis of CCRC and RO. Results The first 20 texture parameters selected with random forest algorithm from corticomedullary phase, nephrographic phase and both of them, with weight values from high to low, were evaluated with Logistic regression, and the AUC values were 0.876, 0.861 and 0.945, respectively. Conclusion Texture analysis based on enhanced renal CT images has clinical value in differential diagnosis of CCRC and RO. |
查看全文 查看/发表评论 下载PDF阅读器 |