邵玉红,张惠,王彬,孔迅,李乾,孙秀明,倪海英.常规超声联合全自动乳腺容积扫描技术对乳腺肿块BI-RADS分类[J].中国医学影像技术,2015,31(2):258~262
常规超声联合全自动乳腺容积扫描技术对乳腺肿块BI-RADS分类
BI-RADS classification of the breast lesions by using the automated breast volume scanner combined handheld ultrasound
投稿时间:2014-08-15  修订日期:2014-12-07
DOI:10.13929/j.1003-3289.2015.02.028
中文关键词:  乳腺肿瘤  超声检查  全自动乳腺容积扫描
英文关键词:Breast neoplasms  Ultrasonography  Automated breast volume scanner
基金项目:
作者单位E-mail
邵玉红 北京大学第一医院超声诊断中心, 北京 100034 13488895579@163.com 
张惠 北京大学第一医院超声诊断中心, 北京 100034  
王彬 北京大学第一医院超声诊断中心, 北京 100034  
孔迅 北京大学第一医院超声诊断中心, 北京 100034  
李乾 北京大学第一医院超声诊断中心, 北京 100034  
孙秀明 北京大学第一医院超声诊断中心, 北京 100034  
倪海英 北京大学第一医院超声诊断中心, 北京 100034  
摘要点击次数: 3962
全文下载次数: 1348
中文摘要:
      目的 探讨超声自动乳腺全容积扫描(ABVS)技术在乳腺肿块BI-RADS分类(3~5类)的价值。方法 回顾性分析235例(共250个结节)手持超声(HUS)诊断为BI-RAD S 3~5类、同时接受ABVS检查的患者。分别应用HUS和HUS+ABVS对乳腺病变进行BI-RADS分类,以病理结果为金标准,分别计算HUS和HUS+ABVS诊断乳腺肿块的敏感度、特异度和准确率,ROC曲线分析并比较两种方法的诊断效能。结果 250个结节中,HUS诊断3~5类乳腺病变的敏感度100%(103/103),特异度69.39%(102/147),准确率82.00%(205/250);HUS+ABVS的敏感度100%(103/103),特异度80.95%(119/147),准确率88.80%(222/250)。ABVS+HUS诊断BI-RADS 3~5类病变的ROC曲线下面积为0.973,大于HUS的0.940(P=0.032)。通过"汇聚征"诊断乳腺恶性肿瘤的敏感度、特异度及准确率分别为65.05%(67/103)、95.92%(141/147)、83.20%(208/250)。两种方法对乳腺病变卫星灶的检出率差异有统计学意义(χ2=30.78,P<0.05),但对于乳腺肿块内钙化及周围导管扩张的检出率差异无统计学意义(χ2=2.56、1.22,P均>0.05)。结论 HUS+ABVS技术在准确判断乳腺占位病变BI-RADS分类、鉴别肿瘤良恶性方面优于HUS。ABVS对于乳腺肿块的钙化、导管扩张及卫星灶的发现具有重要补充作用。
英文摘要:
      Objective To explore the value of automated breast volume scanner (ABVS) in classifying lesions (rank 3-5 in breast imaging reporting and data system [BI-RADS]). Methods Totally 235 patients with 250 breast lesions who underwent both handheld ultrasound (HUS) and ABVS were enrolled, who were diagnosed as BI-RADS 3-5 by HUS. The sensitivity, specificity and accuracy of HUS and ABVS+HUS were calculated to evaluate the BI-RADS classification of breast lesions taking the pathology as the gold standard, and the diagnostic performances of the two methods were compared using ROC analysis. Results Of the 250 breast lesions, the sensitivity, specificity and accuracy of HUS alone were 100% (103/103), 69.39% (102/147) and 82.00% (205/250), and those of ABVS+HUS were 100% (103/103), 80.95% (119/147) and 88.80% (222/250). The area under curve (AUC) of the diagnostic models based on ABVS+HUS (AUC=0.973) was higher than that of the model based on HUS alone (AUC=0.940, P=0.032). The sensitivity, specificity and accuracy of the contraction sign to diagnostic malignancy were 65.05% (67/103), 95.92% (141/147), 83.20% (208/250). The detection rate of the satellite lesions using ABVS was significantly higher than that of using HUS (χ2=30.78, P<0.05), but no differences were found between the two techniques to detect the internal calcification and adjacent mammary duct dilation of the breast lesions (χ2=2.56, 1.22, both P>0.05). Conclusion Compared with HUS, the combination of ABVS and HUS demonstrates higher value in breast lesion's BI-RADS classification and malignance or benignity differentiation. ABVS is a valuable complementary technique for HUS to recognize the internal calcification, mammary duct dilation, and satellite lesions of the breast lesions.
查看全文  查看/发表评论  下载PDF阅读器