李川.利用多层受约束一范数优化检测功能磁共振成像中神经活动[J].中国医学影像技术,2010,26(7):1354~1357
利用多层受约束一范数优化检测功能磁共振成像中神经活动
Detection of multi-layer brain neural activities in functional MR images using constrained L1 optimization
投稿时间:2010-02-08  修订日期:2010-04-28
DOI:
中文关键词:  磁共振成像  一范数优化  多层神经信号模型  血流动力学
英文关键词:Magnetic resonance imaging  L1 Optimization  Multi-layer signal model, neural  Hemodynamics
基金项目:
作者单位E-mail
李川 阿拉巴马大学电子工程系,阿拉巴马 塔斯卡卢萨 35487 li005@crimson.ua.edu 
摘要点击次数: 1972
全文下载次数: 874
中文摘要:
      本研究提出利用fMRI中神经信号内在的稀疏性,通过积分器转换,最大期望算法优化对脑fMRI中血流动力学变化建立多层神经信号模型,将检测脑fMRI中神经活动转化为受约束的一范数优化问题。利用空间自适应滤波器,优化结果可以准确地检测出fMRI中神经活动。通过与目前主流检测方法时间聚类分析、最大相关性方法及图模型推理法对比,本文提出的方法能够以较小的计算复杂度得出精确的结果。
英文摘要:
      In this paper, a framework was proposed to utilize the sparsity within neural activities. Through integrators and EM approach, a multi-layer neural hymodynamic response model was established. By converting the neural activity detection problem into a finding the sparse solution in constrained L1 optimization problem, using adaptive spatial filtering, brain neural activities in multiple scales can be detected. The proposed method was compared with temporal cluster analysis (TCA), the maximum correlation method (MCM), and graphical model inference (GMI). The experimental results demonstrated the computational efficiency and detection accuracy of the proposed approach.
查看全文  查看/发表评论  下载PDF阅读器