张建炜,汪天富,殷杰,查晓霞,罗燕.基于B超图像多重分形谱的脂肪肝严重程度识别[J].中国医学影像技术,2009,25(7):1289~1292
基于B超图像多重分形谱的脂肪肝严重程度识别
Recognition of liver steatosis degree based on multi-fractal spectrum of type-B ultrasonic image
投稿时间:2009-01-03  修订日期:2009-03-23
DOI:
中文关键词:  超声检查  脂肪肝  多重分形谱法  计算机辅助诊断  人工神经网络
英文关键词:Ultrasonography  Fatty liver  Multi-fractal spectrum  Computer-aided diagnosis  Artificial neural network
基金项目:
作者单位E-mail
张建炜 成都医学院医学物理教研室,四川 成都 610083  
汪天富 深圳大学信息工程学院,广东 深圳 518060 tfwang@szu.edu.cn 
殷杰 四川理工学院生物医学工程教研室,四川 自贡 643000  
查晓霞 成都医学院第一附属医院超声科,四川 成都 610500  
罗燕 四川大学华西医院超声科,四川 成都 610041  
摘要点击次数: 2541
全文下载次数: 854
中文摘要:
       目的 采用多重分形谱纹理分析法以及模式识别技术,建立一种识别正常肝脏和不同程度脂肪肝B超图像的计算机辅助诊断方法。方法 通过提取每幅B超图像多重分形谱曲线的奇异标度差和多重谱面积两个特征量,再结合近远场灰度比特征量,组成三维特征矢量输入BP人工神经网络进行分类识别。结果 正常肝脏正确识别率96.00%,轻度脂肪肝识别率80.00%,中度脂肪肝识别率88.00%,重度脂肪肝识别率92.00%。结论 特征矢量结合BP网络的识别方法在B超图像上能较好地识别肝脏脂肪化程度,可作为一种辅助诊断方法。
英文摘要:
      Objective To develop a recognition method of liver steatosis degree on type-B ultrasonic images based on multi-fractal spectrum texture analysis method and pattern recognition. Methods Features of singularity strength width and multi-spectrum area were extracted from the curve of multi-fractal spectrum of each liver ultrasonic images. These two features and the feature of mean intensity ratio comprised a three-dimensional feature vector, which would be classified by BP neural network. Results The classification accuracy was 96.00% for normal liver, 80.00% for mild fatty liver, 88.00% for moderate fatty liver and 92.00% for severe fatty liver. Conclusion Feature vector combined with BP neural network can identify the steatosis degree of liver on the ultrasonic images and can be used as an assistant diagnostic method.
查看全文  查看/发表评论  下载PDF阅读器