黄亚丽,李芬华,张瑞波.基于小波变换的脂肪肝B超图像识别[J].中国医学影像技术,2005,21(11):1761~1763
基于小波变换的脂肪肝B超图像识别
Fatty liver ultrasonic image recognition based on wavelet transform
投稿时间:2005-06-18  修订日期:2005-07-16
DOI:
中文关键词:  纹理分析  多分辨分析  概率神经网络  小波变换  脂肪肝
英文关键词:Texture analysis  Multi-resolution analysis  Probabilistic neural network  Wavelet transform  Fatty liver
基金项目:本文受河北省教育厅项目资助(2002155)。
作者单位E-mail
黄亚丽 河北大学电子与信息工程学院,河北 保定 071002  
李芬华 河北大学电子与信息工程学院,河北 保定 071002 lifenhua@hbu.edu.cn 
张瑞波 华北电力大学电子与信息工程学院,河北 保定 071003  
摘要点击次数: 3119
全文下载次数: 1552
中文摘要:
      目的 探讨超声图像后处理的临床诊断价值。方法 采用小波变换方法对脂肪肝和正常肝的B超图像进行多分辨分析,对小波变换系数进行统计分析,提取变换系数的均值和方差参数,根据提取的特征参数采用概率神经网络对图像进行模式识别。结果 对40幅正常肝和40幅脂肪肝图像中的感兴趣区域提取特征参数,训练后的网络对脂肪肝和正常肝的正确识别率分别为88%和85%。结论 采用小波变换方法提取出来的特征参数可以有效地将两类图像区分开来,医生根据量化特征参数进行诊断,提高了脂肪
英文摘要:
      Objective To investigate the value of medical image postprocessing in diagnosing fatty liver. Methods The wavelet transform was used in analyzing liver ultrasonic image based on multi-resolution analysis. Statistical features such as mean and standard deviation were extracted from transformation coefficients, then the above statistical features were applied for texture classification by probabilistic neural network. Results Experimental Results showed that the method could achieve about 88% identification rate with fatty liver and about 85% with normal liver. Conclusion The feature data extracted from ultrasonic images is useful for increasing the accuracy of clinical diagnosing fatty liver.
查看全文  查看/发表评论  下载PDF阅读器